Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductors

Identifieur interne : 00FB37 ( Main/Repository ); précédent : 00FB36; suivant : 00FB38

Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductors

Auteurs : RBID : Pascal:02-0019927

Descripteurs français

English descriptors

Abstract

We present ab initio density-functional calculations for the electronic structure of the dilute magnetic semiconductors MnxGa1-xAs and MnxIn1-xAs with a realistic x=0.063. We find that the introduction of Mn perturbs the position of the nearest As atoms, but does not break the tetrahedral symmetry. Neither material is found to be strictly half metallic. However, in both materials the Mn content results in a majority-spin valence-band maximum that is ∼0.5 eV above the minority-spin valence-band maximum. This large valence-band split is primarily due to the hybridization of As 4p and Mn 3d orbitals. It results in a significant energy range where holes have a well-defined spin. The effective masses of holes in this range are found to be comparable to those of GaAs and InAs. Hence, in an ideal, disorder-free situation, spin-polarized transport may be explained by conventional transport in the context of a simple band picture. This leads to a theoretical limit of 100% spin injection from these materials. Attaining this limit in a sufficiently ordered material also requires a careful engineering of the Fermi-level position and a sufficiently low temperature.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0019927

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductors</title>
<author>
<name sortKey="Jain, Manish" uniqKey="Jain M">Manish Jain</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering and Materials Science, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Chemical Engineering and Materials Science, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy, Rutgers University, Piscataway</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kronik, Leeor" uniqKey="Kronik L">Leeor Kronik</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering and Materials Science, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Chemical Engineering and Materials Science, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chelikowsky, James R" uniqKey="Chelikowsky J">James R. Chelikowsky</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering and Materials Science, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Chemical Engineering and Materials Science, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Godlevsky, Vitaliy V" uniqKey="Godlevsky V">Vitaliy V. Godlevsky</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering and Materials Science, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Chemical Engineering and Materials Science, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0019927</idno>
<date when="2001-12-15">2001-12-15</date>
<idno type="stanalyst">PASCAL 02-0019927 AIP</idno>
<idno type="RBID">Pascal:02-0019927</idno>
<idno type="wicri:Area/Main/Corpus">010206</idno>
<idno type="wicri:Area/Main/Repository">00FB37</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ab initio calculations</term>
<term>Band structure</term>
<term>Density functional method</term>
<term>Effective mass</term>
<term>Electron spin polarization</term>
<term>Fermi level</term>
<term>Ferromagnetic materials</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Manganese compounds</term>
<term>Semimagnetic semiconductors</term>
<term>Theoretical study</term>
<term>Valence bands</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7120N</term>
<term>7155E</term>
<term>7550P</term>
<term>Etude théorique</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur semimagnétique</term>
<term>Manganèse composé</term>
<term>Gallium arséniure</term>
<term>Indium composé</term>
<term>Polarisation spin électronique</term>
<term>Calcul ab initio</term>
<term>Méthode fonctionnelle densité</term>
<term>Bande valence</term>
<term>Masse effective</term>
<term>Structure bande</term>
<term>Niveau Fermi</term>
<term>Matériau ferromagnétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present ab initio density-functional calculations for the electronic structure of the dilute magnetic semiconductors Mn
<sub>x</sub>
Ga
<sub>1-x</sub>
As and Mn
<sub>x</sub>
In
<sub>1-x</sub>
As with a realistic x=0.063. We find that the introduction of Mn perturbs the position of the nearest As atoms, but does not break the tetrahedral symmetry. Neither material is found to be strictly half metallic. However, in both materials the Mn content results in a majority-spin valence-band maximum that is ∼0.5 eV above the minority-spin valence-band maximum. This large valence-band split is primarily due to the hybridization of As 4p and Mn 3d orbitals. It results in a significant energy range where holes have a well-defined spin. The effective masses of holes in this range are found to be comparable to those of GaAs and InAs. Hence, in an ideal, disorder-free situation, spin-polarized transport may be explained by conventional transport in the context of a simple band picture. This leads to a theoretical limit of 100% spin injection from these materials. Attaining this limit in a sufficiently ordered material also requires a careful engineering of the Fermi-level position and a sufficiently low temperature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>64</s2>
</fA05>
<fA06>
<s2>24</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JAIN (Manish)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KRONIK (Leeor)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHELIKOWSKY (James R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GODLEVSKY (Vitaliy V.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemical Engineering and Materials Science, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854</s1>
</fA14>
<fA20>
<s2>245205-245205-5</s2>
</fA20>
<fA21>
<s1>2001-12-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0019927</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present ab initio density-functional calculations for the electronic structure of the dilute magnetic semiconductors Mn
<sub>x</sub>
Ga
<sub>1-x</sub>
As and Mn
<sub>x</sub>
In
<sub>1-x</sub>
As with a realistic x=0.063. We find that the introduction of Mn perturbs the position of the nearest As atoms, but does not break the tetrahedral symmetry. Neither material is found to be strictly half metallic. However, in both materials the Mn content results in a majority-spin valence-band maximum that is ∼0.5 eV above the minority-spin valence-band maximum. This large valence-band split is primarily due to the hybridization of As 4p and Mn 3d orbitals. It results in a significant energy range where holes have a well-defined spin. The effective masses of holes in this range are found to be comparable to those of GaAs and InAs. Hence, in an ideal, disorder-free situation, spin-polarized transport may be explained by conventional transport in the context of a simple band picture. This leads to a theoretical limit of 100% spin injection from these materials. Attaining this limit in a sufficiently ordered material also requires a careful engineering of the Fermi-level position and a sufficiently low temperature.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A55E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70E50P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7120N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7155E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7550P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur semimagnétique</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Semimagnetic semiconductors</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Manganèse composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Manganese compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Polarisation spin électronique</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electron spin polarization</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Calcul ab initio</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Ab initio calculations</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Density functional method</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Bande valence</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Valence bands</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Masse effective</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Effective mass</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Structure bande</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Band structure</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Fermi level</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Matériau ferromagnétique</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Ferromagnetic materials</s0>
</fC03>
<fN21>
<s1>001</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0151M000650</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00FB37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00FB37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0019927
   |texte=   Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024